Conreyaimath.org

Executive Director of the American Institute of Mathematics, Palo Alto, USA.

Professor of Mathematics, Oklahoma State University .

Analytic Number theory, especially the analytic theory of L-functions

J. B. Conrey and A. Ghosh, Mean values of the Riemann zeta-function, Mathematika 31 (1984), 159–161.

J. B. Conrey and A. Ghosh, A conjecture for the sixth power moment of the Riemann zeta-function, Int. Math. Res. Not. 15 (1998), 775–780.

J. B. Conrey and A. Ghosh, Mean values of the Riemann zeta–function, III, Proceedings of the Amalﬁ Conference on Analytic Number Theory, Universit` di Salerno, 1992. a

J. B. Conrey, A. Ghosh, and S. M. Gonek, Simple zeros of the Riemann zeta-function, Proc. London Math. Soc. 3 (1998), 497–522.

J. B. Conrey and S. M. Gonek, High moments of the Riemann zeta–function,, preprint. [D] W. Duke, The critical order of vanishing of automorphic L-functions with large level, Invent. Math. 119 (1995), 165–174. W. Duke, J. Friedlander, and H. Iwaniec, Bounds for automorphic L-functions, II, Invent. Math.

J. B. Conrey 115 (1994), 219–239. [G] S. M. Gonek, On negative moments of the Riemann zeta–function, Mathematika 36 (1989), 71–88. [H–B] R. Heath–Brown, Fractional moments of the Riemann zeta–function, II, Quart. J. Math. Oxford 44 (1991), 185 - 197.

J. B. Conrey 115 (1994) G. H. Hardy and J. E. Littlewood, Contributions to the theory of the Riemann zeta–function and the theory of the distribution of primes, Acta Mathematica 41 (1918), 119 - 196. [I] A. E. Ingham, Mean–value theorems in the theory of the Riemann zeta–function, Proceedings of the London Mathematical Society 92) 27 (1926), 273–300. MEAN VALUES AND SYMMETRY 23

Conrey, J. Brian. 2003. The Riemann hypothesis. Notices of the American Mathematical Society 50:341–C353.

Legal notice -
Contact

Copyright © 2013 - www.cirs.info - All rights reserved